
Cryptographic Authentication & Authorisation
Methods for the Web using Blockchain

Technologies
Corey Bothwell

University of Zurich
Department of Informatics
MOEC0532 Final Project

31 May, 2022
Zurich, Switzerland

corey.bothwell@uzh.ch

Abstract—This paper investigates novel techniques for com-
mon web-based authentication & authorisation workflows using
blockchain technology and smart contracts. We begin by enu-
merating the traditional methods used in web authentication &
authorisation and highlight their historical development as well
as some of their contemporary limitations. We then propose a
novel architecture that supplants traditional password-based au-
thentication workflows using sessions or tokens and instead relies
on the growing popularity of browser based signing authorities,
or ”crypto wallets”. We present an architectural overview as
well as a prototypical implementation written in Typescript. We
conclude by discussing some interesting properties of the system
and avenues for further development.

Index Terms—blockchain, cryptography, authorisation, au-
thentication, web security

I. INTRODUCTION

The popularity of blockchain technology has grown tremen-
dously in the past few years, largely driven by the rise of
cryptocurrencies. This rise in popularity has a number of
second order effects including the rise in familiarity among the
general public with Smart Contracts (SC) as well as the growth
in use of Browser-Based Signing Authorities, or ”wallets” that
are used as an extension to popular web browsers such as
Firefox, Chrome or Brave.

This presents an interesting opportunity to rethink some
of the assumptions underlying web security. The traditional
methods used to secure user-facing web services forego the
heightened security offered by asymmetric cryptography under
the assumption that it harms User Experience (UX): Manag-
ing private keys is both cumbersome and dangerous for the
average non-technical user. Instead they opt for the ubiquitous
password based system, with increasingly more reliance on
Two-Factor Authentication (2FA).

A. Problems with Passwords

Password-based authentication comes with its own set of
trade-offs. We present an informal overview of some of the
most salient limitations.

1) Tension between UX & Security: Passwords present
unfortunate compromises between security and UX. A shorter
password is easier for the user to remember, yet more vul-
nerable to brute force attack in which an attacker generates
random sequences of possible passwords. This illuminates the
justification for the common password requirements that users
have become familiar with when registering for popular web
services (e.g. ”Must be at least 12 characters and contain a
symbol”), often to their frustration1.

2) Vulnerable to Social Engineering: Additionally, the
manner in which passwords are used (i.e. inputting them into a
web form) makes them more susceptible to social engineering
attacks, where users are tricked into providing their password
to an attacker imitating the service in question under the
pretext of legitimate use.

3) Password Duplication: Passwords are also prone to
duplication by users. Ideally, a user would use a separate
password for every web service they interact with. However,
given the ubiquitous nature of web services in modern life it
is an entirely impossible feat for users to remember the unique
passwords to the vast amount of services they utilise on a daily
basis. The recommended solution is for users to use a special
program known as a ”password manager”, which handles
generating and storing passwords on their behalf. However, the
use of a password manager has a negative effect on overall UX
and presents an additional step in the registration and login
flow. Many users are unfamiliar with password managers.
Thus, the vast majority of users do without and often elect to
duplicate their password(s) across various services [1]. In this
scenario, when an attacker compromises a password they gain
access to multiple services, increasing the severity of the attack
and the scale of the effort required to reconcile compromised

1Interestingly enough the more arcane password requirements, such as
requiring a special symbol, are misguided ideas aimed at requiring passwords
to be less susceptible to brute-force guessing by a determined human.
However, they provide virtually no benefit to a machine-based attack, where
the length of the password is the primary defense. For a humourous take on
this see: https://xkcd.com/936/

https://xkcd.com/936/


services.
4) Authorised Services Maintain Opaque Copies: Pass-

words also suffer from the fact that web services must maintain
a copy of a representation of the password in order to compare
to the user-supplied input upon authentication. We precisely
use the term ”representation” here in order to indicate that
web services should be using a hashed representation of the
password for comparison (see II-C2). Indeed the use of a
secure hashed representation of passwords is ubiquitously
considered mandatory by the security community, nonetheless
there exist many cases in which it is revealed that a web service
has failed to do out of negligence. Bauman, Lu, and Lin (2015)
found that 11 of the top 500 websites stored passwords in
plaintext [2].

Users have no available method to verify that their infor-
mation has been stored correctly in a secure & hashed format;
they must implicitly trust the engineers of the service in ques-
tion that they have indeed correctly hashed their passwords.

However, even with secure hashing in place, password-
based authentication suffers from the very nature that the
service maintains a copy of the password representation.
Even hashed passwords can be cracked with sophisticated
password-cracking mechanisms if they are not created with
sufficient entropy [3]. A better method would be non-custodial
in nature; services should never need to maintain any copy
of authentication data. We will see later how our proposed
solution provides this.

5) Modern Improvements Further Harm UX: The primary
response to the relative weakness of passwords over the past
decade has been to utilise Two-Factor Authentication. Two-
Factor Authentication involves requiring a ”second factor” of
authentication during an authentication attempt to mitigate the
risk associated with a compromised password. This is most
commonly manifested via a one-time code sent to the user in
a trusted manner, often to a verified email or phone number
(via SMS). More recently, small auxiliary applications can
also generate one-time codes known as Time-Based One-Time
Passwords (TOTP) based on predetermined parameters and
the time-of-day [4]. There are even more secure methods that
involve the use of a hardware device, however they remain
relatively unpopular due to their negative impact on UX [5].

While providing an additional layer of security, 2FA
presents a wide variety of UX challenges for users. Relying
on a separate device poses certain challenges. For instance, as-
suming 2FA via a third party email service, any unavailabilities
in the email service could mean the requested web services
are inaccessible. In contrast, 2FA via an SMS is dependent on
a functioning cell signal, while TOTP’s are dependent on the
associated mobile device having requisite charge.

B. Alternatives to Password-Based Authentication

There exist alternatives to password-based authentication
often used by members of the Information Technology (IT)
and Software Development communities2. They are most com-

2We speculate that the vast majority of non-technical users are not aware
that such methods even exist.

monly used to authenticate into servers and machines either
as a human user or in machine-to-machine communication.
These methods usually rely on public-key cryptography and
are generally more secure than password based methods [6].
(See section II-A2 for a more detailed introduction.)

If these more secure methods exist, then why have they
failed to gain widespread adoption throughout the web?

A complete historical overview is beyond the scope of
this paper3. Nonetheless we speculate that the dominance of
password-based authentication flows sprang from the original
convenience that passwords presented in a world with far fewer
and less relevant web services.

Additionally, key-based methods also require basic familiar-
ity with encryption protocols and some initial setup that can be
intimidating for non-technical users. Many of the traditional
methods of setting up public-key authentication methods such
as ssh are subject to human error which compromises the
security of the system4.

Under this context, it’s feasible that simple momentum and
familiarity amongst both users and developers have paved the
way for the world we have today, with password-based au-
thentication remaining the ”default” that users are accustomed
to and that developers are comfortable implementing.

However, in a world with ubiquitous and high-value web
services that drive large portions of everyday life, it’s only
natural that web security becomes more and more vital. This
is reflected by some of the developments mentioned in I-A5,
however the conflicts that these methods present to User
Experience are salient and lead us to ask if the IT and
development communities are perhaps building on the wrong
abstraction.

Indeed, once properly configured, key-based methods are
extremely convenient and obviate almost all of the security
concerns inherent in password-based authentication. They:

• do not exhibit any tension between UX & security as key
generation is an automated process handled by known and
audited algorithms. Software on the user’s device handles
the management of the respective keys, which are much
more secure than password-based methods [6].

• are less subject to social engineering attacks, as users
are not required to input their private key during any
authentication workflow. Users are not even required to
know their private key in order to authenticate, and in
fact for security reasons they shouldn’t know, rather it
is stored in a secure software on the user’s machine.
Requests for the private key stand out as abnormal and
thus as attacks.

• do not suffer from problems with duplication. Users have
no need to memorise their keys which are stored in the
managing software.

• do not require that the service being authenticated against
maintain a copy of the private key. (Indeed doing so

3This work was performed in the context of a 3-credit course at the
University of Zurich in the Spring of 2022.

4E.g. accidentally copying the private key.



would be impossible to support, as knowledge of the
private key essentially ”unlocks” the public key and any
authenticated services it has access to. See II for more
details.)

• do not conflict with, but are rather compatible with
modern 2FA methods5.

C. The Role of Blockchains

Blockchains have risen to prominence over the past decade
primarily driven by the popularity of cryptocurrencies like
Bitcoin and Smart Contracts like those present in the Ethereum
ecosystem. These systems represent a completely open dis-
tributed ledger which is shared between many different ma-
chines. The machines use consensus protocols in order to
determine the ”true state” of the ledger, and machines are not
required to trust each other in order to agree on consensus.
The distributed ledger maintains a record of state changes
made since the initialisation of the system, or the ”Genesis
Block”. See II for more background. Given their open nature,
they are completely dependent on public-key cryptography for
authenticating changes proposed to the distributed ledger. In
order to mutate the ledger (i.e. to write to the blockchain),
users must send a transaction representing the change to be
made along with a signature which is linked to their key-pair.
Only with a valid signature is the transaction accepted by the
nodes in the system.

The growth of the popularity of these systems has led to
enormous demand for interacting with blockchains. Given the
open and permissionless nature, there is generally no hard
requirements on how a state-changing transaction must be ini-
tiated, insofar as it is eventually sent to a node in the network
according to a predefined and valid interface, it is accepted.
Indeed users are free to use any key management software
to generate transactions and send them to a valid node. Users
could theoretically even generate signed transactions manually
with the help of common encryption libraries.

Most users however, demand something more convenient
than sending raw transactions to a node in the network. Indeed
the vast majority of Smart Contract users utilise Browser-
Based Signing Authorities or ”browser wallets” for common
interactions with the blockchain. These wallets are designed as
extensions to common web browsers (Chrome, Firefox, Brave,
etc.) that manage the user’s keys securely on their behalf and
allow the user to interact with the blockchain directly in the
web-browser by visiting web applications provided by SC or
blockchain developers known as ”decentralised applications”
or ”dApps”. The wallets present a simple interface for sending
transactions defined by the application and approved & signed
by the user.

It is important to note here that the public-key authentication
methods employed by browser wallets are fundamentally no
different from their more traditional and obscure use in authen-
ticating servers & machine-to-machine communication com-

5They may however obviate the need. The UX challenges of 2FA naturally
remain; we postulate that with the greater security posture provided by key-
based methods, 2FA is unnecessary except for highly-sensitive applications.

monly employed by the software community. This presents
a very interesting opportunity for the web security commu-
nity to rethink some of the foundational assumptions that
underpin traditional password-based authentication. Namely, if
the fundamental argument for passwords is that they provide
familiarity to the user and that key-based methods are too
obscure, the growth of these browser-based wallets may offer
a solution. Indeed the very use of a ”dApp” represents the
immature6 fusion of a traditional modern web service with a
distributed ledger replacing the role of the backend database.
If blockchains continue to rise in popularity and use, then it
is safe to assume that the use of these browser wallets will
continue to expand. Widespread adoption would mean that
web users around the world would have a simplified, secure,
and convenient method to access public-key cryptography.
Almost orthogonal to their use for blockchains, the growth
of these browser wallets offers a chance to completely rethink
the traditional web security model from the ground up.

D. Paper Structure

We follow this introduction with a brief formal overview
of the required technical background which includes topics
related to blockchains and techniques used in web authen-
tication. Thereafter we present a novel architecture for web
authentication using a a Browser-Based Signing Authority
known as Metamask7 along with a simple Smart Contract.
We provide a prototypical working code implementation along
with screenshots demonstrating its use. We evaluate some
interesting properties of the system and then turn our focus
towards avenues for further development.

II. TECHNICAL BACKGROUND

We now turn our attention towards some brief technical
background. We note that this portion is written informally
in order to be accessible to a wide audience. Readers familiar
with the concepts enumerated below can freely skip to III.

A. Public Key Cryptography

Public key cryptography or asymmetric cryptography is a
method of cryptography that is asymmetric in that depends on
a pair of keys known as a key pair which contains a private
key and a public key. The security of the scheme depends
on the security of the private key, whereas the public key
can revealed without consequence. Public key cryptography
has a number of desirable properties, notably that encrypted
messages can be sent between parties without the need for any
party to reveal the private key. Public key cryptography also
facilitates the creation of verifiable digital signatures, which
can be independently confirmed as having originated from the
signer [7]. See II-A1.

6Immature in the sense of novel and yet to reach its full potential
7https://metamask.io/

https://metamask.io/


1) Digital Signatures: Digital signatures are a method of
signing and verifying data. Public key cryptography facilitates
the creation of digital signatures and proceeds in the following
manner: If Alice wants to send verified data to Bob, she sends
the data along with a signature generated from her private
key. Bob uses Alice’s public key to verify that the signature is
indeed valid (i.e. that it only could have originated from Alice
and nobody else). Refer to [7] for more details.

The digital signature mechanism utilised in public key
cryptography is also the foundational method utilised by
blockchains for verifying transactions sent to the network.
Paraphrasing from [8] (citations maintained): ”The Elliptical
Curve Digital Signature Algorithm is the digital signature
algorithm used by the Ethereum Virtual Machine and serves to
provide proof that owners of a wallet have authorised transac-
tions originating from that wallet. (They also serve two further
purposes, to establish non-repudiation and unmodifiability, see
[9] for more details) Given a signature, a serialized transaction,
and public key of the supposed originator of the transaction,
the ECDSA allows for verification of a transaction, i.e. to
say ’Only the owner of the private key that generated this
public key could have signed this transaction’ [9]. The ECDSA
algorithm also allows the recovery of the public key given a
message hash and associated signature.”

2) SSH: Secure Shell (SSH) is a protocol for accessing
remote machines over a network in an encrypted manner.
Importantly, one of the methods of authentication in the SSH
protocol is via public key signature verification. The client
submits a signed message which the remote server can then
recover the public key from. If the public key matches one of
the authorised keys, the client is allowed to access the remote
machine and a connection is established. For more details see
[10]. We will see how our solutions resembles SSH in some
aspects.

B. Blockchains

Blockchains are a category of distributed ledger technology.
Blockchains maintain a ledger, or a ”system state” that is
distributed over many copies among various nodes in the
network. No single node maintains the system state, and new
entries are added to the ledger after a period of determining
concensus amongst all nodes in the network via a consensus
mechanism.

State transitions in the network, commonly called ”transac-
tions”, are sent via participants and verified to have originated
from their key pair by validating the signature alongside the
ledger entry. In order to prevent abuse by sending infinitely
many transactions, users usually need to pay a small fee
represented by tokens in the network for each transaction they
wish to commit. The fee is paid to ”miners”, which are nodes
that verify the incoming transactions and participant in the
associated consensus mechanism. In the Ethereum ecosystem,
this fee is known as ”Gas” [8].

Blockchains can provide the capability for Smart Contracts,
which represent arbitrary computations stored on the network
which can be initiated with an incoming transaction. Smart

Contracts have led to the growth of Browser-Based Sign-
ing Authorities like Metamask8 which provide users with a
satisfying interface for interacting with Smart Contracts in
a standard web browser. These ”browser wallets” maintain
an asymmetric key-pair (i.e. a public/private key pair) used
for signing blockchain transactions; co-opting this key pair
for authentication purposes is fundamental to our proposed
solution.

One defining characteristic of blockchains that lends our
solution interesting properties is their open and public nature:
anyone can read the state of the system at any time. We will
see later on how we maintain the privacy of user data in our
solution despite storing it on the blockchain.

C. Web Authentication Flows

In order for a user to access a protected web service,
they must first authenticate. Authentication is the process
of proving identity, or that the person attempting to access
the service is indeed who they claim to be. This is distinct
from authorisation, which is the process of determining what
exactly the user has access to within the service (e.g. Is the user
an administrator or simply a normal user?). Since authorisation
is application-specific, we don’t consider it in great detail here.
The focus of this work is on a novel method for authentication
that also facilitates authorisation.

1) Basics of Password Authentication: Traditional
password-based authentication proceeds in the following
manner: The user submits a form containing a unique
identifier that is associated with their identity to the service
(usually a username or email address) along with a password.
The values are sent by the browser in an HTTP request to
the service’s authentication server which performs a lookup
in their database according to the user identifier. If the server
successfully finds the user, it retrieves the account information
of the user, which includes a value that represents the hash of
the original password provided by the user at registration. The
server then hashes the password value that the user provided
when attempting to login (see II-C2). If these two values
match, the user has successfully provided their password and
the server returns a token or a cookie (see below) to the
user’s browser indicating a login success. If the attempt was
not successful, the server notifies the browser that the attempt
was not successful. Usually the user may retry, although here
the implementation is application specific, so this step might
vary.

This token/cookie is stored in the user’s browser and used
to allow access to protected resources during future requests.
It is sent alongside all further requests (until logout) to the
service to identify the user to the server and to demonstrate
that the user has successfully authenticated prior to the request.
Importantly, the token/cookie is cryptographically signed by
the server, which allows the server to ensure that the only
place the token/cookie could have originated was the server
itself.

8https://metamask.io/



2) Password Hashing: Password hashing is an important
concept in password-based authentication. The concept is as
follows: in the event of a data breach targeting a web service
attackers may secure access to the password database. If the
passwords are stored in plain text, the attacker has access to
their raw values and may use them to access the service on
behalf of any user. Furthermore, since we know that users often
re-use passwords across multiple services, further accounts at
other services are likely compromised as well.

The solution is to store passwords in the database in a
special representation known as a hash which is generated
by a predetermined hash function. Informally, a hash function
is a fundamental concept in mathematics and computer science
that describes a special function which can only be computed
in one direction. Essentially, it is a ”one-way street”, and can
be used to generate hash values from a plaintext input, however
the plaintext cannot be recovered with knowledge of the hash
value. There are other desirable properties of hash functions
such as ”deterministic” (the same output for the same input)
and ”collision-free” (two different input values do not return
the same hash). See Figure 1 for a visual overview9.

Because we can always compute the hash value from the
plaintext input (but never the reverse) we can use this to harden
our password database against breach. Instead of storing the
raw password value we store a hash of its value. When the user
attemtps to login, we simply re-hash the provided password
input and compare it to the stored hash value. If the hash
values match, and assuming our hash function has acceptable
properties, we can be sure that the user provided the original
password. If the password is ever to become breached, the
attacker only has access to the hashed values. Submitting the
hashed value in an attempt to authenticate will never result in
success since the server would then ”hash the hash” resulting
in a different value and an invalid comparison.

Despite the benefits offered by hashing passwords, there
are still sophisticated methods available that allow attackers to
reverse engineer their inputs in a practice known as ”password
cracking” [3]. Additionally, users have no guarantees that web
services correctly hash their passwords in order to harden their
password databases. Users are completely dependent on the
respective software engineers to correctly implement password
hashing [2].

Fig. 1. Visualising a hash function.

3) Stateful vs. Stateless Authentication: Once the user has
been authenticated, they must be provided with some small
value that represents their successful login. For our purposes
we will refer to this as a token. This token value can be used
in lieu of re-authenticating for every request. (Imagine if you

9Image created by the author and inspired by: https://khalilstemmler.com/
img/blog/data-structures/what-is-hashing/hash-function.png

needed to enter your username and password every time you
refreshed the page!) As long as the browser sends the token
value alongside every request, the server can interpret the value
and determine that the request came from a user who had
previously authenticated1011.

There exist a wide variety of methods for performing this
essential task, however they generally fall into two main
categories: stateful or stateless. This distinction concerns how
the server interprets the token value sent alongside the request.

In stateful authentication, the server sends a unique identifier
in the token value. The identifier is interpreted by the server
and linked to a value in the database that represents the
users current authentication status commonly referred to as
a ”session”. If the session value is valid the server knows that
the request is authenticated and can continue to perform the
requested action. Additional information about the user, such
as their authorisation level, can also be stored in the session
database. Stateful authentication is the traditional method used
in web services and offers a fine-grained level of control over
which users have access to the system at any given time. For
example, if the service wanted to revoke access to a specific
user, they can do so immediately by altering their value in
the session store. However, many software developers describe
stateful authentication as having downsides at very high scales,
as each request must query the database for the session status.
At high amounts of users this may slow down the system.

In contrast, stateless authentication places all of the required
information regarding the user in the token itself. The popular-
ity of stateless authentication has grown over the proceeding
decade, largely driven by the adoption of standards such as
JSON Web Token (JWT) [11]. In this case, the token sent by
the server upon successful authentication represents the entire
package of data necessary to validate the user’s request. See
Figure 2 for a visual representation of a JWT12.

Upon receiving a request from the browser with a token, the
server simply needs to parse the data, interpret it and verify
that the signature is valid. It can then respond immediately
with the requested data without the need to query a separate
session store. This can potentially provide benefits for the
throughput of the system although it comes with certain
considerations, since the token represents a completely self-
contained and authenticated claim to the server. Because
possession of the token grants access to protected resources,
it is especially important that it is not compromised, and
developers need to take great care in selecting the expiry
time of the token. Additionally, since the token is stateless,
the service owners lose a portion of the natural fine-grained
control available with stateful authentication. For instance, it
is not possible to immediately revoke a user’s access (since

10Browsers mostly handle this process automatically, however web devel-
opers can often override this behaviour to handle the process manually.

11For the avoidance of doubt, recall that the server issued and signed the
token. By verifying the signature it can be sure that it has not been forged.
See II-A1

12Provided courtesy of: https://jwt.io/

https://khalilstemmler.com/img/blog/data-structures/what-is-hashing/hash-function.png
https://khalilstemmler.com/img/blog/data-structures/what-is-hashing/hash-function.png
https://jwt.io/


the token is self-contained and represents an authorised claim)
without sophisticated techniques13.

Fig. 2. A visual representation of a JWT. The left side shows the encoded
data, while the right side shows the decoded version. Note the ”Signature
Valid” text which indicates the signature given by the JWT was successfully
verified to have originated from the provided secret.

4) Token Storage Mechanisms: Once a token has been
generated it needs to be sent to the user’s browser and stored
for successive requests. Here too the software engineers have
a decision to make.

The traditional manner for storing tokens in the browser
is via cookies. Most users are familiar with the nature of
cookies from their use of common websites. A cookie is a
small file that is sent via the server and stored by the browser.
The browser automatically sends the cookie upon further
requests to the same service. The server receives the cookie
and process the data contained therein. Cookies are generally
secure and seen as the favoured method for storing sensitive
user data in the browser. Because the browser normally sends
cookies automatically to the server whenever a request is
made, cookies make users subject to an attack vector known
as Cross-Site Request Forgery (CSRF) (see II-C5), in which
requests from another domain send requests to the web service
without the user’s knowledge. However, modern browsers
support an attribute set on the Cookie called ”SameSite” [12]
which can be used to specify that cookies are only to be sent
from the same domain as the service itself. This combined
with other techniques14 make Cookies generally the preferred
manner of storing sensitive user data such as the authentication
token.

Some web developers prefer storing authentication tokens
in a separate storage mechanism offered by the browser known
as ”LocalStorage”, or its cousin ”SessionStorage”. These
storage mechnisms are accessible to JavaScript, the browser-
based programming language used to control many aspects
of the User Experience of a website. They therefore provide

13We note that the debate in software engineering circles about the
relative merits of stateful vs. stateless authentication is ongoing. For more
information see: https://news.ycombinator.com/item?id=22354534 and https:
//news.ycombinator.com/item?id=21783303

14Notably the use of a ”CSRF Token” on requests.

more flexible control to the developer over exactly how the
application utilises the token in comparison to Cookies, which
are primarily handleded by the browser itself.

The downside of this storage mechanism is that because
the token is stored in a manner accessible to JavaScript, it is
more vulnerable to being intercepted by malicious code placed
by an attacker. (Most of the time, Javascript has no access to
Cookie values, whereas JavaScript has access to LocalStorage
& SessionStorage by definition.) This is known as Cross-
Site Scripting (XSS). For this reason, storing authentication
tokens in LocalStorage/SessionStorage is generally seen as
less secure, however many developers still do so due to the
flexibility it gives them for application development.

5) Common Web Attacks: We describe two common web
attacks related to the use of authentication tokens. The first
is Cross-Site Request Forgery, enumerated above. CSRF is
an attack the takes advantage of the browser’s behaviour of
sending cookies automatically along with requests. An attacker
simply needs to trick the user into making a request to the
service, usually by embedding the request in a malicious site
or via a phishing attempt15. Refer to Figure 3 for a visual
overview16.

CSRF attacks can be widely mitigated by setting the ”Same-
Site” attribute on the authorisation Cookie, which instructs the
browser to only send the Cookie when the request originates
from the same domain. Additional techniques include setting
a one-time ”CSRF Token” into the browser’s form elements
on the web service’s site. When the server receives a request
it validates the special ”CSRF Token” has been sent alongside
the request and matches the expected value. This technique
mitigates the ability of an attacker to send a forged request as
they cannot generate the token value expected by the server.

The second attack we describe is known as Cross-Site
Scripting. XSS is a much more general form of attack on a
web service and is performed by injecting malicious JavaScript
code into the browser’s page. This can happen if web develop-
ers fail to verify user provided data is free from any malicious
content. In essence the browser has no way of determining
which JavaScript is deemed ”safe”, once it has been injected
in the page, the browser will execute it no matter the origin.
Since the injected JavaScript can perform arbitrary operations,
this attack is inherently very general. It is important to note
that the malicious code also has access to any values stored in
the browser’s storage API’s like LocalStorage/SessionStorage,
potentially including any authorisation tokens stored therein.

There are a variety of other potential attack vectors when it
comes to web security. We have enumerated two of the most
common when it comes to the storage of authorisation tokens
and we will see how our proposed solution offers some novel
approaches for mitigating them.

15Assumably, the attack benefits the attacker in some way, by revealing
data or transferring funds etc.

16Diagram created by the author with inspiration from M. Lengyel at:
shorturl.at/cqORW

https://news.ycombinator.com/item?id=22354534
https://news.ycombinator.com/item?id=21783303
https://news.ycombinator.com/item?id=21783303
shorturl.at/cqORW


Fig. 3. A visual overview of Cross-Site Request Forgery.

III. ARCHITECTURE

We now turn our attention to describing the architecture &
implementation details of our proposed solution. Our system
is comprised of three major components: A client, a server,
and a smart contract.

The client is responsible for presenting information to the
user as well as signing and verifying authentication data
provided to the server. Integral to our solution is the presence
of a browser-based signing authority in the user’s browser that
the client can use.

The server is responsible for receiving authentication in-
formation from the client, verifying & encrypting it, and
providing access to protected resources. The server verifies the
authentication attempts from the client by validating signatures
sent in the request.

The smart contract is responsible for storing the authen-
tication claim as determined by the server for the particular
user. The smart contract’s open nature means that the user can
independently verify that the information has been properly
encrypted and is the valid signed data the user originally
provided.

We will now provide a general overview of the entire
authentication flow facilitated by the system. Afterwords, we
will turn our attention to describing the implementation of
each component in detail.

A. The General Authentication Flow

The general authentication flow takes place in two steps:
Registration which takes place once, and Login, which is a
repeated process.

1) Registration: In order to register for a service, the user
navigates to the server web page and is presented with a
standard web form. The user fills in the required information;
thereafter the service’s web application can add any required
authorisation data to the set of fields provided by the user.

The user is then presented with an overview of the complete
information and is then requested to sign the information,
producing a verifiable digital signature. Additionally, the user
is requested to provide their public key (which is safe to
distribute), so that the message may be encrypted by the
service. The user then sends the signed information along with
their public key to the service. These important interactions
happen via the browser wallet, on which our implementation
is completely dependent.

The server receives the signed information from the client
and encrypts it with its own private key along with the public
key provided by the user. Thereafter the server sends the
encrypted information to the smart contract, where it is stored.
The server17 accordingly pays the necessary gas fee for this
transaction. Importantly, the stored information is linked to
the user’s public key18 which is unique and thus serves as
an identifier. We use the term claim to refer to this stored
information, as it represents the user’s claim to resources on
the server.

Once the transaction has completed, the server returns a
response to the client with a location where the client can
query the blockchain to retrieve the encrypted data. This is
preferred to simply returning the encrypted data directly; the
client now has the opportunity to independently verify the data
on-chain. The client can retrieve the stored information and
verify it by decrypting it19. If the decryption succeeds and the
decrypted data produces a message with a valid signature, the
user can be certain that the information has been successfully
encrypted and is unaltered (as otherwise the signature would
be invalid).

2) Login: Once the user has successfully registered, they
can authenticate to access protected resources from the server.
The client authenticates in the following way: When the client
makes a request to the server, it sends alongside it another
message containing the it’s own signed address20 along with
a timestamp of the request. The server takes this request
information and recovers the public key from the signature. If
the recovered address from the signature matches the provided

17More accurately, the account associated with the server’s private key.
18Technically, it is linked to their address, which is a truncated hash of the

public key.
19Recall that only the client and the server can decrypt the message. The

client has provided their public key; the server has encrypted the information
with their own private key and the client’s public key. See II if required.

20Again, for our purposes, the public key and the address of the user’s
account are largely interchangeable. We will refer to them interchangeably
throughout the text.



Fig. 4. The general architecture of our authentication workflow.

address then the user is authenticated; only that specific key
pair could have produced that signature.

Thereafter the server can query the blockchain for the user’s
claim information and decrypt it. The server proceeds to read
the contents which contains information on the appropriate
permissions of the user or any other application-specific in-
formation. The server can then return the response as required
by the application. See Figure 4 for a visual overview.

B. The Client

The client is responsible for presenting the application
interface to the user and interfacing with the browser-based
signing authority to send signed messages on behalf of the
user. The client also verifies the data on the blockchain to
ensure that is has been encrypted and is unaltered.

Our prototypical implementation is built using React.js21,
a library for building user interfaces on the web. We use

21https://reactjs.org/

Ethers.js22 to interface with the browser wallet. Our imple-
mentation was tested using Metamask.

As mentioned previously, the client displays the initial
registration page to the user. The user is asked to connect
their wallet (if not previously done) and to provide their public
key. The user is presented with a basic form asking for a
few mock details like their name. Upon form submission,
we instruct the browser wallet to request a signature from
the user on the data to be sent to the server. The client
implementation is free to add any additional data required by
the application server to register the user; in our implementa-
tion we include a mock ”permissions” field that indicates the
user is authorised to access images from the server. Figure
5 demonstrates our client-side code that signs the provided
values. The _signTypedData function provided by the
Ethers.js library is compliant with ERC-712 [13].

The client posts the data to server using the browser native
fetch API and then awaits the response. The client expects
a response that contains the contractAddress as well as a

22https://docs.ethers.io/v5/

https://reactjs.org/
https://docs.ethers.io/v5/


1 export type Claim = {
2 subject: {
3 email: string;
4 name: string;
5 };
6 permissions: {
7 pictures: boolean;
8 };
9 };

10
11 // All properties on a domain are optional
12 export const domain: Domain = {
13 name: "Claim Demo",
14 version: "1",
15 chainId: 31337,
16 verifyingContract: "0

xCcCCccccCCCCcCCCCCCcCcCccCcCCCcCcccccccC"
, // Okay for demo implementation, not
verified chain-side

17 };
18
19 // The named list of all type definitions
20 export const claimTypes: Record<string,

TypedDataField[]> = {
21 Subject: [
22 { name: "email", type: "string" },
23 { name: "name", type: "string" },
24 ],
25 Permissions: [{ name: "pictures", type: "bool"

}],
26 Claim: [
27 { name: "subject", type: "Subject" },
28 { name: "permissions", type: "Permissions" },
29 ],
30 };
31
32 export const sign = async (signer: JsonRpcSigner,

value: Claim) => {
33 return await signer._signTypedData(domain,

claimTypes, value);
34 };
35
36 export const verify = async (value: Claim,

signature: string) => {
37 return await ethers.utils.verifyTypedData(
38 domain,
39 claimTypes,
40 value,
41 signature
42 );
43 };

Fig. 5. Our client-side implementation that signs the registration data provided
by the user and the service. This data is sent to the server which encrypts it
and then forwards it to our smart contract.

claimAddress. The contractAddress represents the location of
the smart contract where the encrypted data has been stored.
The claimAddress represents the specific location of all of
the claim objects associated with the particular web service.
Finally, using it’s own address (provided by the browser
wallet), the client can query the exact location where the
encrpyted claim has been stored. See III-D for more details
on the simple architecture of our smart contract.

The client can retrieve the claim and can once again use
the browser wallet to decrypt it. The user is prompted by
the wallet for decryption and can preview the contents. Upon
confirmation, if the decryption succeeds the client validates the

recovered signature address matches the wallet’s own address.
If so, the client displays a message to the user that the signature
is valid. The user can be sure that the provided registration
data has not been tampered with and has been safely stored
on-chain in an encrypted manner23. Figure 6 demonstrates
the simple API exposed by Metamask for decrypting data.
See Figure 7 for a screenshot demonstration of the user
successfully verifying the signature of retrieved data.

1 const decrypt = async () => {
2 if (!!cipher) {
3 // This line retrieves the decrypted values

from the browser wallet
4 const plaintext = await provider.send("

eth_decrypt", [cipher, account]);
5 setAppState((s) => ({ ...s, plaintext,

state: State.Complete }));
6 }
7 };

Fig. 6. Using the browser wallet’s (Metamask) API to request the user to
decrypt the encrypted claim retrieved from the smart contract.

Fig. 7. A demonstration of a user successfully verifying the signature of a
decrypted claim object.

Finally, once the registration is successful, the user can
authenticate on further requests to access protected resources.
In our implementation we simulate this with a protected
photograph of a wonderful Swiss landscape.

In order to authenticate, the user simply needs to click a
button and sign their own address. We call this the signature
object; recovering the address contained in the signature and
comparing it to the content of the message (the address itself)
allows the identity of the sender to be established. If the
addresses match, only the user with the corresponding private
key could have possibly generated the signature in question.
The user is thus authenticated.

23Of course, there is nothing stopping a hypothetical service from storing
the data in another location. We touch on this concern in the Evaluation
portion.



Fig. 8. A successfully authenticated user has been granted access to the protected content, in this case an image of a beautiful Swiss landscape.

The server is responsible for verifying the signature and
validating any application-specific permissions stored in the
claim data, which the server independently retrieves24. If
the server successfully validates the signature, the user is
successfully authenticated and the server can safely return the
requested content.

Figure 8 shows the user’s view upon a successful authenti-
cation & retrieval of the protected content.

C. The Server

The server is responsible for registering and encrypting
claim objects which are sent to the blockchain. The server is
also responsible for validating the signatures that users provide
upon successive requests for content, as well as determining
any application-specific permissions stored in the claim object
as required.

The server’s role during the registration flow was implied in
the previous section and is repeated here in more detail. The
server receives a request containing the claim object (filled
with values from the provided form on the client-side, as well

24For latency reasons, web servers would likely cache the permission data
locally instead of retrieving it from the chain every request. The evaluation
portion touches on this consideration

as any programatically added values), a signature of the claim
object provided by the client which indicates the user approves
of the data to be sent, and the public key25 of the user’s key
pair (provided by the user’s browser wallet).

The server encrypts this data with the server’s private key,
which is kept secret throughout the entire process. We use
the open source library TweetNaCl.js26 for the implemen-
tation of our encryption procedures. The encrypted value is
converted into a format acceptable for storage in the smart
contract and is then sent to the chain by the server and is stored
in the smart contract at a specific location tied to the server’s
and user’s addresses. The server then returns this location to
the client, indicating that the registration was successful and
the client is free to verify the stored data. See Figure 9 for
details.

Upon further requests for protected resources, the server
expects to receive a signed copy of the user’s address. If the
recovered address from the signature matches the address in
the provided message, the user is authenticated. The server can
then optionally proof the claim data stored on chain and return

25As well as the address derived from their public key.
26https://tweetnacl.js.org/#/

https://tweetnacl.js.org/#/


1 app.post("/register", async (req: Request, res:
Response) => {

2 const { claim, claimantAddress, publicKey,
signature } = req.body;

3
4 const encrypted = encrypt({
5 publicKey,
6 data: JSON.stringify({ ...claim, signature:

signature }),
7 version: "x25519-xsalsa20-poly1305",
8 });
9

10 const hexEncrypted = JSON.stringify(encrypted)
11 .split("")
12 .map((c) => c.charCodeAt(0).toString(16))
13 .join("");
14
15 const cipher = ‘0x${hexEncrypted}‘;
16
17 const setClaim = await contract.setClaim(

claimantAddress, cipher);
18 await setClaim.wait();
19
20 res.send({
21 contractAddress,
22 claimAddress: signer.address,
23 });
24 });

Fig. 9. The request flow for a new registration in our prototypical server
implementation. The server receives data from the client and encrypts the
received claim along with the signature provided by the user. The server
then converts the encoding of the encrypted data into a format acceptable
to the smart contract and then stores it there at a location tied to the user’s
address. The server then returns the location where the encrypted claim can
be retrieved.

any requested resources to the client. Figure 10 demonstrates
the login code.

We use the open source Express.js library to provide
the framework for our server implementation27.

D. The Smart Contract

In contrast the our client and server implementations, the
smart contract implementation is decidedly minimal. Our
smart contract only performs one initial function: storing the
encrypted claim objects on-chain so that they may be verified
by the client. We use a nested public mapping claims in
order to provide a tree like structure. The outer-mapping maps
services to their respective inner-mapping; here services can
store the encrypted claims for each user indexed by their
respective address.

The nested mapping is completely open and publicly
writable; protection is afforded by ensuring that that index
variable in the outer mapping is not able to be set by the
caller - instead it corresponds to the address of the transaction
sender. This ensures that services can only write the claims of
their own users and not maliciously overwrite others.

In order to interact with the smart contract, the server and
client require complementary pieces of information from one
another. The server requires the address of the user from
their wallet in order to correctly store the associated claim

27See https://expressjs.com/

1 app.post("/login", async (req: Request, res:
Response) => {

2 const { address, date, publicKey, signature } =
req.body;

3 const verifiedAddress = await recoverLogin({
address, date }, signature);

4
5 if (address !== verifiedAddress) {
6 res.status(403).send("Not Authorized");
7 }
8
9 const hasPermission = await verifyClaim(

10 contract,
11 signer.address,
12 address,
13 publicKey
14 );
15
16 if (!hasPermission) {
17 res.status(403).send("Not Authorized");
18 }
19
20 res.send({ content: img });
21 });

Fig. 10. The server validates incoming requests by first ensuring that they
have originated from the requester which checks their provided signature. This
corresponds to the traditional authentication check performed in password-
based authentication when the service would normally check the hash pass-
words to ensure they match. Afterwords the server can verify the claim
object associated with that address stored on-chain to ensure they possess
any required permissions. This corresponds to the traditional authorisation
check in which the server would typically query a traditional database.

in the inner mapping - its address in the outer mapping will
be set automatically by the smart contract upon sending the
transaction. The client knows their address (provided by the
wallet); it requires from the server the server’s address28 so
that it can successfully index to the correct inner mapping
and retrieve its own claim therein29.

1 //SPDX-License-Identifier: MIT
2 pragma solidity ˆ0.8.0;
3
4 import "hardhat/console.sol";
5
6 contract Auth {
7 mapping(address => mapping(address => bytes))

public claims;
8
9 function setClaim(address claimant, bytes

calldata claim) public {
10 claims[msg.sender][claimant] = claim;
11 }
12 }

Fig. 11. Our smart contract implementation. The nested claims mapping is
where the claim objects are stored, indexed first by the service address, and
then user address.

28The address derived from their public key associated with the service,
not their IP address etc.

29Most likely, a more sophisticated implementation would hardcode the
server’s address on the client-side to obviate the need to send it back and
forth over the network.

https://expressjs.com/


IV. EVALUATION

Our approach to authentication exhibits some desirable
properties.

Before we continue, it is important to note that our approach
is composed of two largely orthogonal techniques. The first
is the manner of authentication practiced by the server upon
receiving a request. The server validates the signed message
containing the user’s address and verifies the signature; it
can be said that this technique alone acts a replacement for
password-based authentication.

The second is the manner in which we store the user’s data
encrypted on the blockchain. This is not strictly necessary to
facilitate the authentication flow we propose; web services
could feasibly store the data anywhere e.g. in a traditional
database. We take this a step further and store it on the
blockchain in order to demonstrate a workflow in which the
user can independently verify their data; web services can also
verify authentication data without the need to independently
store it30.

A. Improvements over Password-Based Authentication Offered
by Our Method

Let us revisit some of the deficiencies of password-based
authentication that we enumerated in I.

We described that passwords:
1) exhibit an inherent conflict between security & UX
2) are vulnerable to social engineering attacks
3) are subject to duplication by users
4) are copied and stored by services which require them
5) suffer from attempts to improve their security with

methods like 2FA
Our solution provides considerable advantages over

password-based authentication in all of these areas.
1) Essentially No Conflict between Security & UX: Our

method offers a greatly improved security posture alongside
improved UX. When registering an account, the user no longer
needs to conform with arbitrary password requirements aimed
at improving password strength (e.g. a required length or char-
acter set). The user’s authentication mechanism is contained
entirely within their private key which is managed on their
behalf by their browser wallet. As an orthogonal benefit, the
user is given the opportunity to sign and later verify that their
data has been stored securely.

When logging in, the user only needs to click a button in
their browser wallet to provide the required signature. The
user no longer needs to remember any passwords or employ
the use of a third-party password manager.

2) Much Less Vulnerable to Social Engineering: Our
method provides provides a mechanism that is more robust
to social engineering attacks. The common need for users to
enter their password in password-based authentication means

30Although this work is prototypical, a valid criticism of our approach
would be that even if the user successfully validates the signature of their
released data, the server is free to tamper with it and store it in another
location. We discuss this observation below.

that this is an attractive vector for attackers. Users must be able
to distinguish between legitimate and illegitimate requests for
their password; anyone familiar with a ”Phishing” attack has
experienced this.

The equivalent in our method would be the private key
stored in the browser wallet, something the user should never
be asked to reveal. While there are legitimate cases for
exporting the private key31, this is an operation that can be
reasonably communicated as being very dangerous, such that
any social engineering attacks which attempt to goad the user
into doing so can be reasonably identified.

3) No Requirement for Duplication: The UX challenges
presented by password-based authentication lead users to
often duplicate their passwords across services. Our method
completely eliminates this weakness. Since the authentication
mechanism takes place via signature verification, there is
nothing to duplicate - the signature itself provides proof of
possession of the private key and thus identifies the user.

It may be argued that some form of duplication still takes
place in the sense that, if the user’s private key were to be
compromised, all accounts with web services linked to the cor-
responding public key would be exposed. This has a relatively
straightforward solution: using a separate key-pair for every
service, a capability that would be relatively trivial for browser
wallets to integrate. Wallets already integrate a tree structure
of separate key pairs derived from a single master seed, a
technique that characterises them as hierarchical deterministic
(HD) wallets. See Chapter 5 of [9] for more details.

4) No Copy Maintained by Services: One of the most
marked benefits offered by our solution is that it obviates the
need for web services to store any vulnerable copy of the
user’s password. In our solution, there is simply nothing to
store - authentication is performed by verifying the signature
produced by the user’s wallet, which is a stateless operation.
Only the application specific data related to the user’s permis-
sions in the service are stored, in our case on-chain.

Thus, if we assume a breach of a web service’s user data,
only information related to that specific service is compro-
mised. While grave in its own right, attackers have no way
to infiltrate other services. Users do not need to trust that a
service has securely implemented their password storage with
hashing; there is simply no password to store.

5) Compatible with 2FA Methods: We posit that the in-
creased security posture offered by our approach obviates the
need for common 2FA methods for most applications, which
were introduced as a response to the security deficiencies of
password-based authentication. Nonetheless, for very high-
security applications, our method is fully compatible with
existing 2FA methods.

Table I summarises these points.

B. A Platform to Reduce XSS & CSRF Vulnerabilities

Interestingly, our architecture also lays the groundwork for
new methods to reduce the attack surface of common web

31Mostly regarding transferring the key-pair to another software.



TABLE I
IMPROVEMENTS OFFERED BY OUR AUTHENTICATION METHOD OVER PASSWORD-BASED AUTHENTICATION

Criterion Password-Based Authentication Our Method
Conflict between Security & UX? Inherent Both Security & UX Improved

Social Engineering Risk? High Low to Moderate
Encourages Duplication Across Services? Yes No. Individual keys for each service possible via HD Wallets [9]

Services Maintain a Copy? Yes No
Compatible with 2FA Methods? Yes, required for acceptable security Yes, but not required unless very high security requirements

vulnerabilities, like XSS & CSRF. The advantages enumerated
here are not present in this prototypical implementation and
would be dependent on further development of browser-based
signing authorities to natively integrate this authentication
method. Nonetheless, we believe it is valuable to discuss them
here.

1) XSS: XSS is a wide-ranging and general phenomenon
that concerns foreign and malicious JavaScript which is in-
jected into a webpage by an attacker. This is relevant to
authentication as credentials (like a authentication token sent
by a server) may be stored in LocalStorage/SessionStorage,
which is accessible to JavaScript and thus to the attacker.

Our prototypical implementation requests the user’s signa-
ture directly via the browser wallet’s JavaScript API. Our im-
plementation does not store the generated signature object sent
to the server, but it’s feasible that other implementations might
do so, presumably in LocalStorage/SessionStorage. Thus, if
malicious JavaScript were injected into the page, an attacker
would be able to access the signature object, granting the
malicious code access to the service.

However, with further development of browser wallets,
we believe that these risks could be heavily mitigated. The
procedure for generating signatures of the wallet’s address
could be standardised and hidden behind a formal API and
sent to the service by the browser directly. If the generated
object were inaccessible to the JavaScript on the page, XSS
vulnerabilities would have a far smaller surface area for in-
tercepting authentication credentials. Presumably, the attacker
would only be able to falsify a signature object by indirectly
requesting the user to generate it. To combat this, we would
propose that a robust implementation of such an API would
only allow such objects to be created from the same domain
as the service’s web server, similar to the ”SameSite” attribute
used in modern day web cookies. Developers of web services
would thus only be responsible for ensuring the absence of
XSS vulnerabilities on their own sites.

In conclusion, our authentication flow proposed here does
nothing to prevent XSS attacks in general, but it does suggest
an authentication flow that might one day reduce the surface
area for XSS attacks to access authentication credentials.

2) CSRF: Our technique also suggests a future where
CSRF-style attacks may be all but eliminated outside of more
esoteric implementations32.

32E.g. Websites like forums which display user provided content. Here,
CSRF tokens would still be required.

We again assume further development of browser-based
signing authorities to incorporate a version of the authentica-
tion workflow our work proposes. As discussed prior, a robust
implementation would include a ”SameSite” property similar
to modern browser cookies, in which the signature objects
are only generated for requests sent to the some domain. We
discuss this further in V.

C. Economic Properties

Our approach also exhibits some very interesting economic
properties. Namely, the initial registration step requires a
write transaction to be sent to the blockchain which involves
the payment of Gas (or similar transaction fees in other
blockchains). In our implementation, this is performed by
the service, and the encrypted claim object is sent from the
service’s web server to the chain.

This means that service operators have an economic incen-
tive to ensure that users present a certain minimum economic
value to the service, otherwise user registration leads to
economic loss. We initially speculated that this characteristic
threshold might lead to less low quality web services. Here,
we mean low quality in the sense of ”delivers low eco-
nomic value”. However, it’s difficult to make any substantiated
claims without further investigation into this property which
is unfortunately beyond the scope of this paper. In fact, we
propose that a more robust implementation that builds on our
architecture presented here would actually ”swap” the roles of
the user and the service, with the user paying the required fee
to commit the claim object to the blockchain. See V for more
details.

D. Weaknesses of Our Technique

Our approach maintains a few characteristic weaknesses.
Our implementation doesn’t validate the timestamps of the

signature objects sent to the server, which means that a
compromised signature object is valid indefinitely, and can
be used to authenticate as the user by an attacker. However,
this is solely a characteristic arising from the prototypical
nature of our implementation. A more robust implementation
would include various hardening mechanisms like short-lived
timestamps and service-specific nonces applied to signature
objects.

More intrinsically, our approach centers around providing
the user with a manner to verify the security of the user data
that the service has stored. Hence we allow the user to verify
their own signature of the data which has been encrypted on-
chain. However, in general, there is no method to ensure that



the service has not stored a copy, altered the data, or co-opted
it for purposes not in the interest of the user. It’s likely safe
to assume that most services would in fact do so in order
to cache the claim objects, as it is unattractive to query the
blockchain to validate every request because it would require a
network round trip or running a local blockchain node and for
many services we can assume this is not feasible & presents
an unnecessary development burden. Rather than attempt to
combat this reality (in futility), we embrace it; some of our
suggestions in V center around this point.

In this context we thus conclude that our work maintains
many aspects ripe for refinement and further development.

V. FURTHER DEVELOPMENT

The most salient manner to further improve our proposed
method is to build the capabilities directly into the browser-
based signing authorities, or perhaps even directly into web
browsers themselves. It’s quite feasible that the process of
sending the signature object to the server could be completely
automated by the browser wallet or browser, a user would
simply need to grant login access one time; thereafter the
wallet could ensure that the signature object is sent with every
request to the server. As mentioned previously, we propose
that a mandatory ”SameSite” functionality would provide the
foundation for a very secure implementation and help combat
CSRF-style attacks. Hardening the API and disallowing any
direct JavaScript access would similarly reduce the attack sur-
face for common XSS attacks targeting authentication details.

Of course, an unanswered question remains: How do ser-
vices request cross-site resources directly from the client (i.e.
the browser)? Server side rendering largely obviates the need
for this use case, as the server is responsible for requesting
third party content on the user’s behalf and then sends it to
the browser. However, for the case where client side cross-site
requests are required, we hypothesise that it may be possible
to integrate a ”whitelist” of allowed cross-site domains which
could be integrated into the third-party service’s web server.
The browser would be required to send an initial request to
determine if the origin domain is included in this whitelist,
if so, the browser sends the actual request, including the
signature object33.

Finally, we turn our attention to the aforementioned eco-
nomic aspects of our authentication framework. We initially
determined that the it should be the responsibility of the
services to cover the transaction fees required to send the
encrypted claim to the blockchain. This was done with the
reasoning that the economic burden should not be placed onto
the user; services should be required to cover this economic
cost as an acknowledgement of the value of the data they are
receiving.

However, we believe that a more sophisticated implementa-
tion may reverse this. In this scenario the users would encrypt
the data and send it to the blockchain themselves. While this

33Readers with a web development background will notice this is concep-
tually identical to Cross-Origin Resource Sharing (CORS).

places the economic burden on the users, this ensures they
have complete control over the data released to the service.
If the scalability of modern blockchains continues to increase,
we believe that this cost could be sufficiently minimised to
the point where the self-custody of data becomes the standard
and secure default.

VI. CONCLUSION

We have investigated two innovative techniques that con-
tribute to a novel web authentication workflow, namely:

1) Utilising the growth of browser-based signing authorities
as a vector to introduce a more secure authentication
workflow for the web based on public key cryptography
with improved UX

2) Experimenting with the retention of user data on the
blockchain to provide open verification of its secure
storage and retrieval

We have seen that this authentication framework provides
marked benefits over traditional password-based authentication
mechanisms and is more secure by nature while offering a
better user experience. We also determine that further devel-
opment of this framework may help reduce the attack surface
for common web attacks, namely CSRF and XSS.

We have introduced some of the interesting economic
properties inherent our framework which dictate that some
party in the registration process must bear the transaction fee
required to store the data on the blockchain; we conclude that
the ramifications of this are not fully explored and ripe for
more investigation, and we propose that placing the economic
burden on the user may allow them to fully control their
data. Finally, we conclude that this authentication framework
deserves continued research attention and possibly, direct
integration into browser-based crypto wallets, or even browsers
themselves.

ACKNOWLEDGMENT

The author would like to thank Professor Dr. Thomas
Puschmann for the opportunity to write the course paper on
this topic as well as allowing it to be written in the provided
IEEE format.

REFERENCES

[1] “Password manager and vault 2021 annual report: Usage,
awareness, and market size.” https://www.security.org/digital-safety/
password-manager-annual-report/, Dec 2021.

[2] E. Bauman, Y. Lu, and Z. Lin, “Half a century of practice: Who is
still storing plaintext passwords?,” in Information Security Practice and
Experience (J. Lopez and Y. Wu, eds.), (Cham), pp. 253–267, Springer
International Publishing, 2015.

[3] L. Bošnjak, J. Sreš, and B. Brumen, “Brute-force and dictionary attack
on hashed real-world passwords,” in 2018 41st International Conven-
tion on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pp. 1161–1166, 2018.

[4] M. View, J. Rydell, M. Pei, and S. Machani, “TOTP: Time-Based One-
Time Password Algorithm.” RFC 6238, May 2011.

[5] K. Krol, E. Philippou, E. De Cristofaro, and M. A. Sasse, “”They
brought in the horrible key ring thing!” Analysing the Usability of
Two-Factor Authentication in UK Online Banking.” https://arxiv.org/abs/
1501.04434, 2015.

https://www.security.org/digital-safety/password-manager-annual-report/
https://www.security.org/digital-safety/password-manager-annual-report/
https://arxiv.org/abs/1501.04434
https://arxiv.org/abs/1501.04434


[6] O. Spaniol and D. Thießen, “Security in communication systems: Au-
thentication lecture.” http://www-i4.informatik.rwth-aachen.de/content/
teaching/lectures/sub/sikon/sikonSS07/, April 2007.

[7] R. W. Shirey, “Internet Security Glossary, Version 2.” RFC 4949, Aug.
2007.

[8] C. Bothwell, J. Faessler, and M. Gamba, “Group 07: ERC-721 NFT
with ERC-20 & Off-Chain Signing / Report,” tech. rep., University of
Zurich, Faculty of Business, Economics and Informatics, Blockchain
Programming Seminar, 2021.

[9] A. M. Antonopoulos and G. Wood, Mastering Ethereum: building smart
contracts and DApps. O’Reilly Media, Inc., 1st ed., 2018.

[10] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Authentication
Protocol.” RFC 4252, Jan. 2006.

[11] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT).” RFC
7519, May 2015.

[12] “Samesite cookies - http: Mdn.” https://developer.mozilla.org/en-US/
docs/Web/HTTP/Headers/Set-Cookie/SameSite, May 2022.

[13] R. Bloemen, L. Logvinov, and J. Evans, “EIP-712: Ethereum typed
structured data hashing and signing, Ethereum Improvement Proposals,
no. 712.” https://eips.ethereum.org/EIPS/eip-712, 2017.

VII. CODE

The full code implementation used and described by
this work is available at: https://github.com/cmbothwell/
blockchain-auth.

http://www-i4.informatik.rwth-aachen.de/content/teaching/lectures/sub/sikon/sikonSS07/
http://www-i4.informatik.rwth-aachen.de/content/teaching/lectures/sub/sikon/sikonSS07/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://eips.ethereum.org/EIPS/eip-712
https://github.com/cmbothwell/blockchain-auth
https://github.com/cmbothwell/blockchain-auth

	Introduction
	Problems with Passwords
	Tension between UX & Security
	Vulnerable to Social Engineering
	Password Duplication
	Authorised Services Maintain Opaque Copies
	Modern Improvements Further Harm UX

	Alternatives to Password-Based Authentication
	The Role of Blockchains
	Paper Structure

	Technical Background
	Public Key Cryptography
	Digital Signatures
	SSH

	Blockchains
	Web Authentication Flows
	Basics of Password Authentication
	Password Hashing
	Stateful vs. Stateless Authentication
	Token Storage Mechanisms
	Common Web Attacks


	Architecture
	The General Authentication Flow
	Registration
	Login

	The Client
	The Server
	The Smart Contract

	Evaluation
	Improvements over Password-Based Authentication Offered by Our Method
	Essentially No Conflict between Security & UX
	Much Less Vulnerable to Social Engineering
	No Requirement for Duplication
	No Copy Maintained by Services
	Compatible with 2FA Methods

	A Platform to Reduce XSS & CSRF Vulnerabilities
	XSS
	CSRF

	Economic Properties
	Weaknesses of Our Technique

	Further Development
	Conclusion
	References
	Code

